A myosin II ATPase inhibitor reduces force production, glucose transport, and phosphorylation of AMPK and TBC1D1 in electrically stimulated rat skeletal muscle.

نویسندگان

  • David R Blair
  • Katsuhiko Funai
  • George G Schweitzer
  • Gregory D Cartee
چکیده

Contraction-stimulated glucose transport by skeletal muscle appears to be caused by the cumulative effects of multiple inputs [potentially including AMP-activated protein kinase (AMPK), Ca(2+) flux, and force production], making it challenging to isolate the roles of these putative regulatory factors. To distinguish the effects of force production from the direct consequences of Ca(2+) flux, the predominantly type II rat epitrochlearis muscle was incubated without (vehicle) or with N-benzyl-p-toluenesulfonamide (BTS), a highly specific myosin II ATPase inhibitor that prevents force production by electrically stimulated (ES) type II fibers without altering cytosolic Ca(2+). In ES muscles, BTS vs. vehicle had an 84% reduction in force production and a 57% decrement in contraction-stimulated 3-O-methylglucose transport (3MGT). BTS did not alter the ES increase in phosphorylation of CaMKII (indicative of cytosolic Ca(2+)) or the amount of glycogen depletion. ES caused significant reductions in ATP (48%) and phosphocreatine (67%) concentrations for vehicle-treated muscles. For BTS-treated muscles, ES did not reduce ATP and caused only a 42% decrease in phosphocreatine. There was an ES increase in phosphorylation of AMPK, acetyl-CoA carboxylase (an AMPK substrate), and TBC1D1 for vehicle-treated muscles but not for BTS-treated muscles. These results point toward an essential role for tension-related events, including AMPK activation, in the 57% contraction-stimulated increase in 3MGT that was inhibited by BTS and further suggest a possible role for TBC1D1 phosphorylation. Non-tension-related events (e.g., increased cytosolic Ca(2+) rather than increased AMPK and TBC1D1 phosphorylation) are implicated in the contraction-stimulated increase in 3MGT that persisted in the presence of BTS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brought in by force: AMPK, TBC1D1, and contraction-stimulated glucose transport in skeletal muscle.

TRANSIENT INTRACELLULAR CALCIUM OSCILLATIONS were the first signaling mediator described to regulate contraction-stimulated glucose transport in skeletal muscle (6). Thirty years later, the discoveries, that 5 -AMP-activated protein kinase (AMPK) activator 5-aminoimidazole-4-carboxamide 1-D-ribofuranoside (AICAR) stimulated glucose transport in skeletal muscle and that muscle contraction activa...

متن کامل

Inhibition of Contraction-Stimulated AMP-Activated Protein Kinase Inhibits Contraction-Stimulated Increases in PAS-TBC1D1 and Glucose Transport Without Altering PAS-AS160 in Rat Skeletal Muscle

OBJECTIVE Phosphorylation of two members of the TBC1 domain family of proteins, Akt substrate of 160 kDa (AS160, also known as TBC1D4) and TBC1D1, has been implicated in the regulation of glucose transport in skeletal muscle. Insulin-stimulated phosphorylation (measured using the phospho-Akt substrate [PAS] antibody) of AS160 and TBC1D1 appears to occur in an Akt-dependent manner, but the kinas...

متن کامل

Of mice and men: filling gaps in the TBC1D1 story.

Skeletal muscle is the major tissue for the increased glucose disposal caused by insulin or exercise. Each stimulus elevates GLUT4 glucose transporter translocation to skeletal muscle’s cell surface membranes, but distinct signalling pathways lead to this common outcome. Insulin’s proximal signalling events include activation of the insulin receptor, phosphatidylinositol 3-kinase, and Akt2. The...

متن کامل

Contraction-stimulated glucose transport in rat skeletal muscle is sustained despite reversal of increased PAS-phosphorylation of AS160 and TBC1D1.

Akt substrate of 160 kDa (AS160), the most distal insulin signaling protein known to be important for insulin-stimulated glucose transport, becomes phosphorylated with skeletal muscle contraction. Akt, AMP-activated protein kinase (AMPK), and Ca(2+)/calmodulin-dependent kinase II (CaMKII) have been implicated in regulating AS160 and/or glucose transport. Our primary aim was to assess time cours...

متن کامل

Role of the AMPKgamma3 isoform in hypoxia-stimulated glucose transport in glycolytic skeletal muscle.

Skeletal muscle glucose transport is regulated via the canonical insulin-signaling cascade as well as by energy-sensing signals. 5'-AMP-activated protein kinase (AMPK) has been implicated in the energy status regulation of glucose transport. We determined the role of the AMPKgamma3 isoform in hypoxia-mediated energy status signaling and glucose transport in fast-twitch glycolytic extensor digit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 296 5  شماره 

صفحات  -

تاریخ انتشار 2009